Objects for States

By Adam Petersen

Originally captured irDesign Patterns [1], Objects for States is described in close gngjion with the Singleton pattern. This articldlwexplain
why this is an unfortunate combination and invegggbetter alternatives for implementing the patterC++. The complete source code for each
implementation approach is available from my horgedd].

The Singleton Connection

Design Patterns includes the name Objects for States only asias ahd the pattern is probably better known ®piimary name: State. | prefer
the name Objects for States because it expresieshmintent and resulting structure in a muchidretay. After all, the main idea captured in the
pattern is to represent each state as an objést@in.

Besides the naming issue everything starts justifintbe pattern description and nothing indicatest Singleton is about to enter the scene. Not
even adesign Patterns discusses implementation issues concerning thentié of state-objects do they actually mentiorg®iton. Turn the page
and suddenly the pattern appears in the sample witleeach state implemented as Singleton. LateDesign Patterns officially relates the two
patterns by concluding thaState objects are often Singletons” [1]. However true that statement may be, isgioad design decision?

The case against Mr Singleton
The Singleton pattern is on the verge of beingciafiy demoted to anti-pattern status. In ordegéd the freshest insider information possible, |
decided to carry out an interview with the subjgatself. Mr Singleton surprised me with his honestyl introspective nature.

- "Mr Singleton, you have been accused of causing design damage [6] and of leading programmers to erroneous abstractions by
masquerading your tendencies to global domination as a cool object-oriented solution. What are your feelings?"

- "I'm just an innocent pattern, | did nothing wrong. | feel truly misunderstood."

- "But your class diagram included in Design Patterns looks rather straightforward. It doesn't get simpler than that - one class only -
how could anyone possibly misunderstand that?"

- "Well, that's the dilemma". He continues with a mystic look on his fatklook simple but my true personality is rather complex, if | may
put it that way."

I understand he has more to say on the subjdcsel! if we can get further.

- "Interesting! Care to elaborate?" It seems like he just waited for this opportunityr. Singleton immediately answers, not without agtaf pride
in his voice:

- "Sure, first of all I'm hard to implement".

- "Yes, I'm aware of that. Most writings about you are actually descriptions of the problems you introduce. What springs to my mind is,
hmm, well, no offence, discussions about killing Singletons [9], a subject which makes matters even worse. There’s also all the
multithreading issues with you involved [10]."

- "Yeabh, right, but my implementation is the minor problem. Can you keep a secret?"

- "Sure”, | reply crossing my fingers.

- "Hmm, | shouldn't really mention this, but Design Patterns are over-using me."

- "Wow! You mean that you are inappropriately used to implement other patterns?"

- "Yes, you may put it that way. | mean, part of my intent is to ensure that a class only has one instance. But if an object doesn't have
any internal state, then what's the point of using me? If there isn't any true uniqueness constraint, why implement mechanisms for
guaranteeing only one, single instance?"

Reflecting on the above dialogue | notice that galdwes a common problem with many implementatigsiag Objects for States. In most designs
the state objects are stateless, yet many progresnmeluding my younger self, implement them asgiitons. Sounds like some serious tradeoffs
are made. After all, | like to take a test-drivggpepach and writing unit tests with Singletons ilved is a downright scary thought. Mr Singleton

agrees:

- "It's sad, isn't it? You end up solving the solution. Not only does it mean writing unnecessary code and that's a true waste; worse is
that I'm wrong from a design perspective too."

There it is! Implementing Objects for States usBiggleton is, | quote once morayrong from a design perspective". He said it himself. The
good news is that in this case a better designrakans less code and less complexity. But befor@ijugninto the details of why and how, let's
leave Mr Singleton for a while and recap the dstailObjects for States.

Objects for States Recap

Objects for States works by emulating a dynamiagkeof type and the parts to be exchanged are suledspd in different states. A state transition
simply means changing the pointer in the contexhfone of the concrete states to the other. Conaidanple, digital stop-watch. In its most basic
version, it has two states: started and stoppeglykm Objects for States to such a stop-watchltegu the structure shown in Figure 1.

watch_state
stop_watch
delegates state specific requeststo| ;s -
. pure» ~watch_state() void watch_state::start

+ start() : void +* start() : void - S
+ stop(): void L -

PO +* stop() : void) cout << "Event start() not handled in "

-+ «pure» state_name() : std::string << state_name() << \n’;

==l

stopped_state started_state
+* start() : void +* stop() : void
-+ state_name() : std::string -+ state_name() : std::string

Figure1: Structure of Objectsfor States

Before developing a concrete implementation, let&stigate the involved participants and their oasgbilities:

« stop_wat ch: Design Patterns defines this as the context. The context has at@oto one of our concrete states, without knowing
exactly which one. It is the context that speciftes interface to the clients.

« wat ch_stat e: Defines the interface of the state machine, $yag all supported events. Depending upon the lgrabdomain,
wat ch_st at e may also implement default actions for differemergs. The default actions may range from throwemgeptions and
logging to silently ignoring the events (the UMLtadn Figure 1 shows an example of a default adtigplemented in thetart ()
function that sends a debug trace to standard utpu

e stopped_state andstarted_st at e: These are concrete states and each one of theapsnates the behaviour associated with the
state it represents.

It depends

Design Patterns includes many examples of good OO designs. An plarns its adherence to one of the most importastigh principles:
"Programming to an interface, not an implementation”. In fact all patterns in the catalogue, with eratable pathological exception - Singleton,
adhere to this principle. Yet there are some suhtbnces to watch out for. Upon state transitibespbinter in the context has to be changed to the
new state. The typical approach is to let each ewacstate specify their successor state and trifpgetransition. This way each state needs a link
back to its context.

In its canonical form, Objects for States usedenft declaration to allow states to access theiteca object. A friend declaration used this way
breaks encapsulation, but that's not really thennpadblem; the problem is that it introduces a icydependency between the context and the
classes representing states. Such a dependentylsstacle to unit tests and leads to big-bangiat®ns, although limited to the micro-universe
of the context. Fortunately enough it is ratheaigtitforward to break this dependency cycle. Trs fitep is to introduce an interface to be used by
the states:

cl ass watch_st ate;
cl ass watch_access

public:
virtual void change_state_to(watch_state* new state) = O;

pr ot ect ed:
~wat ch_access() {}

}s

This interface is realized in the context and eathte is given a reference to it. A state can noekema transition by invoking
change_state_to(). Now, | deliberately didn't write exactly how thertext shall implement the interface. From a desigd usability
perspective public inheritance isn't a good ide&t; ch_access is a result of our implementation efforts of weaikg the dependencies and we
really don't want to expose implementation detailslients of thest op_wat ch.

The perhaps simplest solution is offered by theridiPrivate Interface [3]. All there is to it is tet st op_wat ch inherit wat ch_access
privately. Now a conversion fromit op_wat ch towat ch_access is only allowed within thest op_wat ch itself. That is, thest op_wat ch
can grant controlled access to its states andtslame shielded from theat ch_access interface. Or are they really? Well, they are lslgid from
the conceptual overhead of the interface but teer®re to it.

What worries me is that inheritance, private or, paits strong compile-time dependencies upon tieatsl ofst op_wat ch. In his classic book
Effective C++, Scott Meyers advices us tesé private inheritance judiciously” [2]. Meyers also proposes an alternative thaind fimore
attractive, albeit with increased complexity: deela private nested class in the context and Istdlass inherit publicly. The context now uses
composition to hold an instance of this classlastilated in Figure 2. Not only is it cleaner wifspect to encapsulation, it also allows us torobnt
the compilation dependencies of our clients as jitassible to refactor it to a Pimpl [8] solutidméeded.

«interface»

watch_access e iy
specifies transitions through

+* «pure» change_state_to(watch_state*) : void
~watch_access()

‘F

«nested class»
state_controller

watch_state
stop_watch

-current_state

+* «pure» ~watch_state()
+* start() : void

+ start() : void

+ state_controller(watch_state*)
+ stop(): void

+* change_state_to(watch_state*) : void +* stop(): void
-+ «pure» state_name() : std::string

Figure 2: Decouplethrough a nested class

Enough of fancy diagrams — let’s carve it out id€o
cl ass stop_watch
public:
private:

/1 Meyers Item 39: Prefer public inheritance plus conposition in favour of private inheritance.
class state_controller : public watch_access

{
public:
virtual void change_state_to(watch_state* new state)
{
}
s
state_controller state;

b
With the main structure of the context in place'reveeady to tackle the allocation of states.

A Dynamic Allocation Scheme
Our first approach is to allocate the states dynaltyi as they are needed. A state transition simpians allocating the new state, wrapped in a
suitable smart pointer from boost [4], and pasging the context. Here's an example on the stogbeie:

/1 watch_state.h

i&/.pedef boost: :shared_ptr<watch_state> watch_state_ptr;

/1 stopped_state.cpp
voi d stopped_state::start(watch_access& watch)

wat ch_state_ptr started(new started_state);

wat ch. change_state_to(started);

}

The started-state has an identical mechanism, flzduse it allocatest opped_st at e as its successor. With the allocation scheme iceplee
can implement the context:

/1 stop_watch.h
cl ass stop_watch

public:
stop_wat ch();
void start();
void stop();
private:

class state_controller : public watch_access

{
wat ch_state_ptr current_state;
public:
state_controller(watch_state_ptr initial _state)
current_state(initial_state)
{
}
/1 Hide the extra indirection for the client by using en nasse del egati on.
wat ch_state_ptr operator->() const
{
return current_state;
}
virtual void change_state_to(watch_state_ptr new state)
{
current_state = new state;
}
b

state_controller state;

h

Here we let thast op_wat ch specify its initial state upon construction:

/1 stop_watch. cpp

stop_wat ch: : st op_wat ch()
state(watch_state_ptr(new stopped_state))

{

}

Our preference of public inheritance in combinatidgth composition over private inheritance leadsmoextra level of indirection. We can hide this
indirection by overloadingper at or - > in thest at e_cont r ol | er, which makes the context's delegation to the statraightforward:

/1 stop_watch. cpp
voi d stop_watch::start()

{

state->start(state);

}

voi d stop_watch::stop()

{

state->stop(state);

}

Dynamic allocation of the states is a simple sohutiyet it makes several tradeoffs:

+ Allows for stateful states, i.e. instance vargabih the states.
- Potentially many and frequent heap allocationg h@ve negative performance impact
- Hard to change to sharing states (such a chapgles through all states).

- Dependent upon a concrete class (i.e. the nate)stvhich is a barrier to unit tests.

Sharing States - The Return of the Singletons

With instance variables in the states, dynamiccalion is a simple solution. However, in most aggtions of Objects for States the state-objects
are there just to provide a unique type and donead any instance variabld3esign Patterns describes this adf"State objects have no
instance variables [...] then contexts can share a State object" [1]. In their sample codBesign Patterns notes that this is the case, only one
instance of each state-object is required, and tivilh motivation makes each state a Singleton.

After my interview with Mr Singleton | promised &xplain why this is the wrong abstraction. The ogais that the responsibility of managing
state-instances is put on the wrong object, natglystate itself, and an object should better setime anything about the context in which it is
used.Design Patterns describes a particular case where only one instanneeded. This need, however, doesn’t implyiquamess constraint on
the state-objects themselves that would motivateSimgletons. Further, whether states should beedha not should be decided in the context.
Obviously the Singleton approach breaks this ral for all practical purposes, forces all statebé stateless.

To summarize, Singleton leads to:

an erroneous abstraction,

unnecessary code complexity,

superfluous uniqueness constraints,

and it seriously limits unit testing capabilities.

PwdPR

Clearly another approach would be preferable. Howewefore sharing any states, | would like to pdmtJoshua Kerievsky's advice thdtts"
always best to add state-sharing code after your users experience system delays and a profiler points you to the state-instantiation
code as a prime bottleneck" [5].

Going Global

When implementing Objects for States the uniquenesstraint of Singleton is actually an unwanteepbyduct of the solution. So, let's focus on
the second part of Singleton's intergrdvide a global point of access" [1]. These are the things programmers speak lmout- hobody wants to
get caught using globals, yet global variablesnaoee honest about the intent than to camouflage the Singletons. Consider the following code
shippet:

/| possible_states.h
class watch_state;

nanespace possi bl e_stat es{
extern watch_state* stopped;
extern watch_state* started;

}

/1 stopped_state.cpp
#i ncl ude "possible_states.h"

voi d stopped_state::start(watch_access& watch)
usi ng possi bl e_states::started;

wat ch. change_state_to(started);

}

No constraints on the number of possible instantée states themselves. But who defines themZ@hxt seems like a good candidate:

/1 stop_watch. cpp

namespace{

st opped_state stopped_i nstance;
started_state started_instance;

}

namespace possi bl e_st at es{
wat ch_st at e* st opped &st opped_i nst ance;
wat ch_state* started &st arted_i nstance;

}

Except for the construction (we have to initialiaer st at e_control | er with possi bl e_st at es: : st opped instead of a dynamically
allocated state), the rest of the context codesstay same. Any tradeoffs made? Yes, always. Hiexedre:

+ Conceptually simple and definitely simpler thaa thassic Singleton approach (same characteribtitanore honest in its intent).
+ No dependencies from the states upon concretsaddonly a forward declaration is actually usggoissi bl e_st at es. h) .

+ Primitive but possible way to unit test individistates by use of link-time polymorphism (thisheitue uses the linker to link i
different state definitions, i.e. test-stubs, iast®f the real ones st op_wat ch. cpp).

+- States are shared.
- Forced to share states, which makes it virtuallyossible to use stateful states.
- Still not quite true to thegtogram to an interface" principle.

- Scalability problems witlpossi bl e_st at es. h, which must be updated each time a state is addezmoved.

In Control

Using link-time polymorphism to unit test? Yuck! Nearticularly OO, is it? No, it sure isn't, butvbuldn't discard a solution just by that objection.
Anyway, what about finally approaching a solutitvattremoves the dependencies between the sub?sitasng the state management into the
state_control | er makes it possible.

/1 watch_access. h
cl ass watch_access

L

public:
virtual void change_to_started() = O;
virtual void change_to_stopped() = O;

b

/1 stop_watch.h
cl ass stop_watch

{
class state_controller : public watch_access

started_state started;
st opped_state stopped;

wat ch_state* current_state;
public:

state_controller()
current _stat e(&st opped)

{
}
virtual void change_to_started()
{
current_state = &started;
}
virtual void change_to_stopped()
{
current _state = &stopped;
}

p

Thestate_control | er allocates all possible states and switches bettfemm as requested by the states. What's leftetsttites is specifying
their successors in abstract terms:

/1 stopped_state.cpp
voi d stopped_state::start(watch_access& watch)

wat ch. change_to_started();

}

/1 started_state.cpp
void started_state::stop(watch_access& wat ch)

wat ch. change_t o_st opped();

}

And here we are, finally programming to an inteefand not an implementation. Let’s look at the Itesycontext:

+ The responsibility for the allocation scheme fgeve it should be: in the context.

+ States are easily shared among instances by gttiém static. Such a decision is taken in theeocdrénd not coded into the states
themselves as in the traditional Singleton approach

+ All states written towards an interface, whichkenthem easy to unit test.

- Doesn't scale wellat ch_access runs the risk of growing fat as it has to providethods for all possible states, which ig a
similar problem to the global approach withssi bl e_st at es. h.

A Generative Approach

The previous solution indicated potential scalapliroblems; adding new states requires modificetimwat ch_access and its implementer,
state_control | er. In my experience this has been an acceptable-titidor most cases; as long as the state-madhis@ble and relatively
few states are used (5 - 10 unique states) | wduliink twice about it. However, in the ideal wayrintroducing a new state should only affect the
states that need transitions to it. Reflecting uponlast example, although limited to only two efatthe pattern is clear: the different methods for
changing statechange_t o_started(), change_t o_st opped()) are identical except for the type encoded infthection name. Sounds

like a clear candidate for compile-time polymorphisThe core idea is simple: each state instantataember function template with the next state
as argument.

/1 Exanple from stopped_state.h
voi d stopped_state::start(watch_access& watch)

wat ch. change_state_to<started_state>();

}
Each member function template instantiation cregtesiew state object and changes the referertbe icontext. Something along the lines of:

class X

{
tenpl at e<cl ass new_st at e>
voi d change_state_to()

wat ch_state_ptr created_state(new new state);

current _state = created_state;
}
}s

A quick quiz: in the listing above, what class sldo¥ be? The states specify their transitions by inwgkinethods omat ch_access and by
means of the virtual function mechanism the callispatched to the context. Now, there's no suasth@s virtual member function templates in
C++. The solution is to intercept the call chain aagture the template argument in an, necessariiyvirtual, member function template, create
the new state instance there and delegate to titextdoy a virtual function.

/1 watch_access. h
cl ass watch_access

{
public:

tenpl at e<cl ass new_st at e>
voi d change_state_to()

wat ch_state_ptr created_state(new new state);

change_state_to(created_state);

}

protect ed:
~wat ch_access() {}
typedef boost::shared_ptr<watch_state> watch_state_ptr;
private:
/1 Delegate the actual state nanagenment to the derived class through this method.
virtual void change_state_to(watch_state _ptr new state) = O;

}s

/1 stop_watch.h
class state_controller : public watch_access

wat ch_state ptr current_state;

public:
state_controller()

/1 Specify the initial state.
wat ch_access: : change_state_t o<stopped_state>();

}
virtual void change_state_to(watch_state_ptr new state)
{

current_state = new state;

}
_—

Considering the tradeoffs shows that the one stepafal in scalability pushed us back with respeatépendency management:

+ Scales well, no know-them-all class; the commilenerates code to instantiate states.

- The states depend upon concrete classes.

Recycling States

The last example brought us back to a dynamic atioc scheme. However, that knowledge is encap=lilatthinwat ch_access and we can
easily switch to another allocation strategy. Peaingple, in a single-threaded context static objectsa straightforward way to share states and
avoid frequent allocations:

/1 watch_access. h
cl ass watch_access

L
public:
tenpl at e<cl ass new_st at e>
voi d change_state_to()
{
static new state created_state;
change_state_to(&created_state);
}
S

State objects can also be recycled by introducingriation of the design pattern Flyweight [1].fact, Design Patterns links these two patterns
together with its statement that'$ often best to implement State [...] objects as flyweights”. Does the claim hold true? Let's try it out areks

First each object is associated with a unique Ré&we idea is, that the first time an object is restee from the flyweight factory, a look-up is
performed. If an object with the requested keyaalyeexists a pointer to that object is returnedhe@tise the object is created, stored in the fgctor
and a pointer to the newly created object returfiée example below introduces a pool for state aibja af | ywei ght _f act ory using the
unique type-name as key.

tenpl at e<cl ass fl ywei ght >
class flyweight_factory

{
public:
t ypedef boost::shared_ptr<flyweight> flyweight _ptr;

tenpl at e<cl ass concrete_fl ywei ght >
flyweight _ptr get_flyweight()
{

const std::string key(typeid(concrete_flyweight).nanme());
t ypenanme pool type::const_iterator existing_flyweight(pool.find(key));

i f(pool.end() !'= existing flyweight) {
return existing_ flyweight->second;

}

el se {
flywei ght _ptr new_ flywei ght (new concrete_flywei ght);
const bool inserted = pool.insert(std:: make_pair(key, new flyweight)).second;
assert(inserted);
return new_fl yweight;

}

}
private:

typedef std::map<std::string, flyweight_ptr> pool type;
pool _type pool ;

The flyweights are fetched from the instantiatiofithe member function templatewat ch_access.
cl ass watch_access

typedef flyweight factory<watch_state> state_factory;
state_factory factory;

public:

tenpl at e<cl ass new_st at e>
voi d change_state_to()

{

change_state_to(factory.get flywei ght<new state>());

pr ot ect ed:
~wat ch_access() {}

typedef state factory::flyweight_ptr watch_state_ptr;
private:

/1 Delegate the actual state nanagenent to the derived class through this nethod.
virtual void change_state_to(watch_state_ptr new state) = O;

}s

Thest at e_control | er stays as before because the internal protot@nge_st ate_t o(wat ch_state_ptr), is left untouched.

+ Scales well, no know-them-all class; the compilenerates code to instantiate states.

+ Allows for sharing states among all instancestafp_wat ch by making thd | ywei ght _f act or y static inmat ch_access.
+ Generid | ywei ght _f act or y for all default-constructable types.

- The states depend upon concrete classes.

- Relatively high design complexity.

Conclusion
As this article has highlighted the problems inhéiie a Singleton based Objects for States solufiofeels fair to let Mr Singleton get the final
word. After all, if | was successful his career nsagfer. Will the two patterns finally be separa&ed

- “l sure hope so”, Mr Singleton answers,Clearly there are better alternatives and if | ever get the opportunity I'm prepared to sacrifice
my link in Objects for States in the name of good design.”

- “That's a great attitude and I'm delighted you take it that way. Speaking of design, any particular solution you would recommend?”

- “I don't think you can put it that way. Like all design alternatives each one of them comes with its own set of tradeoffs, which must be
carefully balanced depending on the problem at hand.”

References
1. Gamma, Helm, Johnson & Vlisside®)ésign Patterns”, Addison-Wesley, 1995
Scott Meyers, Effective C++ Third Edition”, Addison-Wesley, 2005
James Newkirk, Private interface”, 1997,ht t p: / / www. obj ect nent or. com
www. boost . org
Joshua Kerievsky,Refactoring to Patterns”, Addison-Wesley, 2004
Mark Radford, “SINGLETON — The Anti-Pattern!”, Ovedd 57
Complete source code for this articeyw. adanpet er sen. se
Herb Sutter, Exceptional C++", Addison-Wesley, 2000
The Pimpl idiom was originally described by Johndlam as the “Cheshire Cat”.
9. John Vlissides, Pattern Hatching”, Addison-Wesley, 1998
10. Meyers & Alexandrescu,C++ and the Perils of Double-Checked Locking”, 2004,ht t p: / / www. ar i st ei a. com

Acknowledgements
I would like to thank Drago Krznaric, Alan Griffish Phil Bass, and Richard Blundell for their valudbkrback.

N h~wWN

